\(\int \frac {(3+3 \sin (e+f x))^{3/2}}{\sqrt {c+d \sin (e+f x)}} \, dx\) [574]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (verified)
   Maple [F]
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F(-1)]
   Mupad [F(-1)]

Optimal result

Integrand size = 29, antiderivative size = 109 \[ \int \frac {(3+3 \sin (e+f x))^{3/2}}{\sqrt {c+d \sin (e+f x)}} \, dx=\frac {3 \sqrt {3} (c-3 d) \arctan \left (\frac {\sqrt {3} \sqrt {d} \cos (e+f x)}{\sqrt {3+3 \sin (e+f x)} \sqrt {c+d \sin (e+f x)}}\right )}{d^{3/2} f}-\frac {9 \cos (e+f x) \sqrt {c+d \sin (e+f x)}}{d f \sqrt {3+3 \sin (e+f x)}} \]

[Out]

a^(3/2)*(c-3*d)*arctan(cos(f*x+e)*a^(1/2)*d^(1/2)/(a+a*sin(f*x+e))^(1/2)/(c+d*sin(f*x+e))^(1/2))/d^(3/2)/f-a^2
*cos(f*x+e)*(c+d*sin(f*x+e))^(1/2)/d/f/(a+a*sin(f*x+e))^(1/2)

Rubi [A] (verified)

Time = 0.15 (sec) , antiderivative size = 111, normalized size of antiderivative = 1.02, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.138, Rules used = {2842, 21, 2854, 211} \[ \int \frac {(3+3 \sin (e+f x))^{3/2}}{\sqrt {c+d \sin (e+f x)}} \, dx=\frac {a^{3/2} (c-3 d) \arctan \left (\frac {\sqrt {a} \sqrt {d} \cos (e+f x)}{\sqrt {a \sin (e+f x)+a} \sqrt {c+d \sin (e+f x)}}\right )}{d^{3/2} f}-\frac {a^2 \cos (e+f x) \sqrt {c+d \sin (e+f x)}}{d f \sqrt {a \sin (e+f x)+a}} \]

[In]

Int[(a + a*Sin[e + f*x])^(3/2)/Sqrt[c + d*Sin[e + f*x]],x]

[Out]

(a^(3/2)*(c - 3*d)*ArcTan[(Sqrt[a]*Sqrt[d]*Cos[e + f*x])/(Sqrt[a + a*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]])])
/(d^(3/2)*f) - (a^2*Cos[e + f*x]*Sqrt[c + d*Sin[e + f*x]])/(d*f*Sqrt[a + a*Sin[e + f*x]])

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 2842

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(-b^2)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 2)*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(m + n))), x] + Dist[1/(
d*(m + n)), Int[(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^n*Simp[a*b*c*(m - 2) + b^2*d*(n + 1) + a^2*d
*(m + n) - b*(b*c*(m - 1) - a*d*(3*m + 2*n - 2))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &
& NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1] &&  !LtQ[n, -1] && (IntegersQ[2*m,
2*n] || IntegerQ[m + 1/2] || (IntegerQ[m] && EqQ[c, 0]))

Rule 2854

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
-2*(b/f), Subst[Int[1/(b + d*x^2), x], x, b*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]))
], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {a^2 \cos (e+f x) \sqrt {c+d \sin (e+f x)}}{d f \sqrt {a+a \sin (e+f x)}}+\frac {\int \frac {-\frac {1}{2} a^2 (c-3 d)-\frac {1}{2} a^2 (c-3 d) \sin (e+f x)}{\sqrt {a+a \sin (e+f x)} \sqrt {c+d \sin (e+f x)}} \, dx}{d} \\ & = -\frac {a^2 \cos (e+f x) \sqrt {c+d \sin (e+f x)}}{d f \sqrt {a+a \sin (e+f x)}}-\frac {(a (c-3 d)) \int \frac {\sqrt {a+a \sin (e+f x)}}{\sqrt {c+d \sin (e+f x)}} \, dx}{2 d} \\ & = -\frac {a^2 \cos (e+f x) \sqrt {c+d \sin (e+f x)}}{d f \sqrt {a+a \sin (e+f x)}}+\frac {\left (a^2 (c-3 d)\right ) \text {Subst}\left (\int \frac {1}{a+d x^2} \, dx,x,\frac {a \cos (e+f x)}{\sqrt {a+a \sin (e+f x)} \sqrt {c+d \sin (e+f x)}}\right )}{d f} \\ & = \frac {a^{3/2} (c-3 d) \arctan \left (\frac {\sqrt {a} \sqrt {d} \cos (e+f x)}{\sqrt {a+a \sin (e+f x)} \sqrt {c+d \sin (e+f x)}}\right )}{d^{3/2} f}-\frac {a^2 \cos (e+f x) \sqrt {c+d \sin (e+f x)}}{d f \sqrt {a+a \sin (e+f x)}} \\ \end{align*}

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(304\) vs. \(2(109)=218\).

Time = 1.55 (sec) , antiderivative size = 304, normalized size of antiderivative = 2.79 \[ \int \frac {(3+3 \sin (e+f x))^{3/2}}{\sqrt {c+d \sin (e+f x)}} \, dx=\frac {3 \sqrt {3} (1+\sin (e+f x))^{3/2} \left (-2 (c-3 d) \arctan \left (\frac {\sqrt {2} \sqrt {d} \sin \left (\frac {1}{4} (2 e-\pi +2 f x)\right )}{\sqrt {c+d \sin (e+f x)}}\right )-(c-3 d) \text {arctanh}\left (\frac {\sqrt {2} \sqrt {d} \cos \left (\frac {1}{4} (2 e-\pi +2 f x)\right )}{\sqrt {c+d \sin (e+f x)}}\right )+c \log \left (\sqrt {2} \sqrt {d} \cos \left (\frac {1}{4} (2 e-\pi +2 f x)\right )+\sqrt {c+d \sin (e+f x)}\right )-3 d \log \left (\sqrt {2} \sqrt {d} \cos \left (\frac {1}{4} (2 e-\pi +2 f x)\right )+\sqrt {c+d \sin (e+f x)}\right )-2 \sqrt {d} \cos \left (\frac {1}{2} (e+f x)\right ) \sqrt {c+d \sin (e+f x)}+2 \sqrt {d} \sin \left (\frac {1}{2} (e+f x)\right ) \sqrt {c+d \sin (e+f x)}\right )}{2 d^{3/2} f \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^3} \]

[In]

Integrate[(3 + 3*Sin[e + f*x])^(3/2)/Sqrt[c + d*Sin[e + f*x]],x]

[Out]

(3*Sqrt[3]*(1 + Sin[e + f*x])^(3/2)*(-2*(c - 3*d)*ArcTan[(Sqrt[2]*Sqrt[d]*Sin[(2*e - Pi + 2*f*x)/4])/Sqrt[c +
d*Sin[e + f*x]]] - (c - 3*d)*ArcTanh[(Sqrt[2]*Sqrt[d]*Cos[(2*e - Pi + 2*f*x)/4])/Sqrt[c + d*Sin[e + f*x]]] + c
*Log[Sqrt[2]*Sqrt[d]*Cos[(2*e - Pi + 2*f*x)/4] + Sqrt[c + d*Sin[e + f*x]]] - 3*d*Log[Sqrt[2]*Sqrt[d]*Cos[(2*e
- Pi + 2*f*x)/4] + Sqrt[c + d*Sin[e + f*x]]] - 2*Sqrt[d]*Cos[(e + f*x)/2]*Sqrt[c + d*Sin[e + f*x]] + 2*Sqrt[d]
*Sin[(e + f*x)/2]*Sqrt[c + d*Sin[e + f*x]]))/(2*d^(3/2)*f*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^3)

Maple [F]

\[\int \frac {\left (a +a \sin \left (f x +e \right )\right )^{\frac {3}{2}}}{\sqrt {c +d \sin \left (f x +e \right )}}d x\]

[In]

int((a+a*sin(f*x+e))^(3/2)/(c+d*sin(f*x+e))^(1/2),x)

[Out]

int((a+a*sin(f*x+e))^(3/2)/(c+d*sin(f*x+e))^(1/2),x)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 265 vs. \(2 (95) = 190\).

Time = 0.62 (sec) , antiderivative size = 989, normalized size of antiderivative = 9.07 \[ \int \frac {(3+3 \sin (e+f x))^{3/2}}{\sqrt {c+d \sin (e+f x)}} \, dx=\text {Too large to display} \]

[In]

integrate((a+a*sin(f*x+e))^(3/2)/(c+d*sin(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

[-1/8*((a*c - 3*a*d + (a*c - 3*a*d)*cos(f*x + e) + (a*c - 3*a*d)*sin(f*x + e))*sqrt(-a/d)*log((128*a*d^4*cos(f
*x + e)^5 + a*c^4 + 4*a*c^3*d + 6*a*c^2*d^2 + 4*a*c*d^3 + a*d^4 + 128*(2*a*c*d^3 - a*d^4)*cos(f*x + e)^4 - 32*
(5*a*c^2*d^2 - 14*a*c*d^3 + 13*a*d^4)*cos(f*x + e)^3 - 32*(a*c^3*d - 2*a*c^2*d^2 + 9*a*c*d^3 - 4*a*d^4)*cos(f*
x + e)^2 - 8*(16*d^4*cos(f*x + e)^4 - c^3*d + 17*c^2*d^2 - 59*c*d^3 + 51*d^4 + 24*(c*d^3 - d^4)*cos(f*x + e)^3
 - 2*(5*c^2*d^2 - 26*c*d^3 + 33*d^4)*cos(f*x + e)^2 - (c^3*d - 7*c^2*d^2 + 31*c*d^3 - 25*d^4)*cos(f*x + e) + (
16*d^4*cos(f*x + e)^3 + c^3*d - 17*c^2*d^2 + 59*c*d^3 - 51*d^4 - 8*(3*c*d^3 - 5*d^4)*cos(f*x + e)^2 - 2*(5*c^2
*d^2 - 14*c*d^3 + 13*d^4)*cos(f*x + e))*sin(f*x + e))*sqrt(a*sin(f*x + e) + a)*sqrt(d*sin(f*x + e) + c)*sqrt(-
a/d) + (a*c^4 - 28*a*c^3*d + 230*a*c^2*d^2 - 476*a*c*d^3 + 289*a*d^4)*cos(f*x + e) + (128*a*d^4*cos(f*x + e)^4
 + a*c^4 + 4*a*c^3*d + 6*a*c^2*d^2 + 4*a*c*d^3 + a*d^4 - 256*(a*c*d^3 - a*d^4)*cos(f*x + e)^3 - 32*(5*a*c^2*d^
2 - 6*a*c*d^3 + 5*a*d^4)*cos(f*x + e)^2 + 32*(a*c^3*d - 7*a*c^2*d^2 + 15*a*c*d^3 - 9*a*d^4)*cos(f*x + e))*sin(
f*x + e))/(cos(f*x + e) + sin(f*x + e) + 1)) + 8*(a*cos(f*x + e) - a*sin(f*x + e) + a)*sqrt(a*sin(f*x + e) + a
)*sqrt(d*sin(f*x + e) + c))/(d*f*cos(f*x + e) + d*f*sin(f*x + e) + d*f), -1/4*((a*c - 3*a*d + (a*c - 3*a*d)*co
s(f*x + e) + (a*c - 3*a*d)*sin(f*x + e))*sqrt(a/d)*arctan(1/4*(8*d^2*cos(f*x + e)^2 - c^2 + 6*c*d - 9*d^2 - 8*
(c*d - d^2)*sin(f*x + e))*sqrt(a*sin(f*x + e) + a)*sqrt(d*sin(f*x + e) + c)*sqrt(a/d)/(2*a*d^2*cos(f*x + e)^3
- (3*a*c*d - a*d^2)*cos(f*x + e)*sin(f*x + e) - (a*c^2 - a*c*d + 2*a*d^2)*cos(f*x + e))) + 4*(a*cos(f*x + e) -
 a*sin(f*x + e) + a)*sqrt(a*sin(f*x + e) + a)*sqrt(d*sin(f*x + e) + c))/(d*f*cos(f*x + e) + d*f*sin(f*x + e) +
 d*f)]

Sympy [F]

\[ \int \frac {(3+3 \sin (e+f x))^{3/2}}{\sqrt {c+d \sin (e+f x)}} \, dx=\int \frac {\left (a \left (\sin {\left (e + f x \right )} + 1\right )\right )^{\frac {3}{2}}}{\sqrt {c + d \sin {\left (e + f x \right )}}}\, dx \]

[In]

integrate((a+a*sin(f*x+e))**(3/2)/(c+d*sin(f*x+e))**(1/2),x)

[Out]

Integral((a*(sin(e + f*x) + 1))**(3/2)/sqrt(c + d*sin(e + f*x)), x)

Maxima [F]

\[ \int \frac {(3+3 \sin (e+f x))^{3/2}}{\sqrt {c+d \sin (e+f x)}} \, dx=\int { \frac {{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {3}{2}}}{\sqrt {d \sin \left (f x + e\right ) + c}} \,d x } \]

[In]

integrate((a+a*sin(f*x+e))^(3/2)/(c+d*sin(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate((a*sin(f*x + e) + a)^(3/2)/sqrt(d*sin(f*x + e) + c), x)

Giac [F(-1)]

Timed out. \[ \int \frac {(3+3 \sin (e+f x))^{3/2}}{\sqrt {c+d \sin (e+f x)}} \, dx=\text {Timed out} \]

[In]

integrate((a+a*sin(f*x+e))^(3/2)/(c+d*sin(f*x+e))^(1/2),x, algorithm="giac")

[Out]

Timed out

Mupad [F(-1)]

Timed out. \[ \int \frac {(3+3 \sin (e+f x))^{3/2}}{\sqrt {c+d \sin (e+f x)}} \, dx=\int \frac {{\left (a+a\,\sin \left (e+f\,x\right )\right )}^{3/2}}{\sqrt {c+d\,\sin \left (e+f\,x\right )}} \,d x \]

[In]

int((a + a*sin(e + f*x))^(3/2)/(c + d*sin(e + f*x))^(1/2),x)

[Out]

int((a + a*sin(e + f*x))^(3/2)/(c + d*sin(e + f*x))^(1/2), x)